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UNIT –I 

INTRODUCTION TO ELECTRICAL ENGINEERING  

Objectives:   

 To introduce the terminology used in electrical circuits. 

 To study voltage-current relationships of circuit elements. 

 To analyze electrical circuits using techniques like voltage division, current division. 

 

Syllabus: INTRODUCTION TO ELECTRICAL CIRCUITS    

Introduction, History of Electrical Engineering, Network Elements classification, Circuit Concepts-

R,L,C, Ideal Voltage Source, Practical Voltage Source, Ideal Current Source, Practical Current 

Source, Independent Voltage Source & Current Source, Dependent Voltage Source & Current 

Source, Voltage-Current Relationships for passive Elements. 

Outcomes: 

On completion, the student should be able to:  

 Understand various terminology used in electrical circuits. 

 Classify network elements and understand voltage-current relationships of R, L, C elements. 

 Differentiate between ideal/practical/dependent and independent sources and their 

characteristics. 

Learning Material 

Introduction: 

 An Electric circuit is an interconnection of various elements in which there is at least one 

closed path in which current can flow. An Electric circuit is used as a component for any engineering 

system. 

 The performance of any electrical device or machine is always studied by drawing its 

electrical equivalent circuit. By simulating an electric circuit, any type of system can be studied for 

e.g., mechanical, hydraulic thermal, nuclear, traffic flow, weather prediction etc. 

All control systems are studied by representing them in the form of electric circuits. The 

analysis, of any system can be learnt by mastering the techniques of circuit theory. 

Electric circuit theory and electromagnetic theory are the two fundamental theories upon 

which all branches of electrical engineering are built. Many branches of electrical engineering, such 

as power, electric machines, control, electronics, communications, and instrumentation, are based on 

electric circuit theory. Therefore, the basic electric circuit theory course is the most important course 

for an electrical engineering student, and always an excellent starting point for a beginning student in 

electrical engineering education. Circuit theory is also valuable to students specializing in other 

branches of the physical sciences because circuits are a good model for the study of energy systems 

in general, and because of the applied mathematics, physics, and topology involved. 

In electrical engineering, we are often interested in communicating or transferring energy 

from one point to another. To do this requires an interconnection of electrical devices. Such 

interconnection is referred to as an electric circuit, and each component of the circuit is known as an 

element. 

Key Points 

 The valance electrons which are loosely attached to the nucleus of an atom are called free 

electrons. 

 The flow of free electrons is called as electric current. 

 Time rate of change of charge is called as electric current. 
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i =
dQ

dt
Coulomb

sec⁄ (or)Ampere 

If one coulomb charge flows through one section in one second is called as one Ampere 

current. 

 Voltage is the energy required to move a unit charge through an element. 

V =
dW

dQ
Joule

Coulomb
⁄ (or)Volts 

 The difference in the potential of two charged bodies is called as potential difference. 

Units: Volt 

 Total work done in electric circuit is called as energy (E). 

Units: Joules 

 Rate of transfer of energy is called as power (P). 

P =
dW

dt
 

P =
dW

dQ
∗

dQ

dt
 

P = V ∗ I 

“The rate at which work is done in electric circuit is called as power”. 

 Electrical Network and Circuit 

 
The interconnection of two or more circuit elements (Sources, Resistors, inductors 

and capacitors) is called an Electric network. If the network contains at least one closed path, 

it is called an electric circuit. Every circuit is a network, but all networks are not circuits. 
 

Introduction to Electrical Engineering : 

Electrical engineering (sometimes referred to as electrical and electronic engineering) is a 

professional engineering discipline that deals with the study and application of electricity, electronics 

and electromagnetism. The field first became an identifiable occupation in the late nineteenth century 

with the commercialization of the electric telegraph and electrical power supply. The field now 
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covers a range of sub-disciplines including those that deal with power, optoelectronics, digital 

electronics, analog electronics, computer science, artificial intelligence, control systems, electronics, 

signal processing and telecommunications. 

The term electrical engineering may or may not encompass electronic engineering. Where a 

distinction is made, electrical engineering is considered to deal with the problems associated with 

large-scale electrical systems such as power transmission and motor control, whereas electronic 

engineering deals with the study of small-scale electronic systems including computers and 

integrated circuits. Another way of looking at the distinction is that electrical engineers are usually 

concerned with using electricity to transmit energy, while electronics engineers are concerned with 

using electricity to transmit information. 

History of Electrical Engineering : 

William Gilbert (1540–1603), English physician, founder of magnetic science, published 

De-Magnet, a treatise on magnetism, in 1600. 

 Charles A. Coulomb (1736–1806), French engineer and physicist, published the laws of 

electrostatics in seven memoirs to the French Academy of Science between 1785 and 1791. His 

name is associated with the unit of charge. 

 James Watt (1736–1819), English inventor, developed the steam engine. His name is used 

to represent the unit of power.  

Alessandro Volta (1745–1827), Italian physicist, discovered the electric pile. The unit of 

electric potential and the alternate name of this quantity (voltage) are named after him. 

 Hans Christian Oersted (1777–1851), Danish physicist, discovered the connection between 

electricity and magnetism in 1820. The unit of magnetic field strength is named after him. 

 Andre Marie Ampere ` (1775–1836), French mathematician, chemist, and physicist, 

experimentally quantified the relationship between electric current and the magnetic field. His works 

were summarized in a treatise published in 1827. The unit of electric current is named after him. 

 Georg Simon Ohm (1789–1854), German mathematician, investigated the relationship 

between voltage and current and quantified the phenomenon of resistance. His first results were 

published in 1827. His name is used to represent the unit of resistance. 

 Michael Faraday (1791–1867), English experimenter, demonstrated electromagnetic 

induction in 1831. His electrical transformer and electromagnetic generator marked the beginning of 

the age of electric power. His name is associated with the unit of capacitance. 

 Joseph Henry (1797–1878), American physicist, discovered self-induction around 1831, 

and his name has been designated to represent the unit of inductance. He had also recognized the 

essential structure of the telegraph, which was later perfected by Samuel F. B. Morse.  

Network Elements Classification : 

1. Active & passive: 

An element is said to be active, if it is able to deliver the energy to outside world for 

infinite time, otherwise passive. Examples for active elements are sources and passive are 

R,L,C. 

Note: 

1. Ohm’s Law is not applicable for active elements. 

2. If V/I ratio is positive, then it is called as passive element.Passive elements cannot 

supply more energy than what it had drawn previously. 

2. Linear & Non-linear elements: 

If the characteristic of an element is a straight line passing through the origin, it is 

called as linear element and these characteristics are constant. 

 



Page - 4 

 

 

Examples: 

 Linear elements are R, L, and C. 

 Non-Linear elements are Diode, Transistor. 

3. Unilateral &Bilateral elements: 

If an elements offers same impedance (opposition) for both the directions of flow of 

current through it is called as bilateral element otherwise it is unilateral element. 

Examples: 

 Bilateral elements are R, L, C. 

 Unilateral element is Diode, transistor. 

For forward voltage Diode acts as short circuit. i.e. R=0. In reverse Bias it acts as open 

circuit i.e. R is infinity. So here Diode offers different resistance for different of current. 

Therefore, it is called as unilateral element. 

If V/I characteristics are same in all direction, it is called as Bilateral element. 

4. Time variant / invariant: 

If the element characteristics are independent of time, it is called as time variant, 

otherwise time variant. 

 

Case (i) 

V

I
 is Positive.  It is passive element, bilateral element, linear element. 

Case (ii) 

V

I
 is Positive in one Quadrant and 

V

I
 is Negative in other direction.∴  

V

I
 ratio is not same 

in both directions.  It is active element, unilateral element, non-linear element. 
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5. Lumped and Distributed Elements 
 

 Lumped elements are those elements which are very small in size & in which 

simultaneous actions takes place. Typical lumped elements are capacitors, resistors, 

inductors. 

 Distributed elements are those which are not electrically separable for analytical 

purposes. For example a transmission line has distributed parameters along its length and 

may extend for hundreds of miles. 

 

Circuit concepts : 

Resistor : 

Materials in general have a characteristic behavior of resisting the flow of electric charge. 

This physical property, or ability to resist current, is known as resistance and is represented by the 

symbol R. 

The circuit element used to model the current- resisting behavior of a material is the resistor. 

Resistance: (R) 

It is a property of a material, which opposes the flow of electric current. 

Units: ohm’s Ω 

Let  ‘𝑙’ be the length of the material 

 A be the cross sectional area of material. 

 

𝑙 

Resistance is directly proportional to length of the material, 

𝑅 ∝ 𝑙     (1.1) 

As the area of cross section increases, electron can move freely. 

Resistance is inversely proportional to the area of cross section. 

     R ∝
1

A
     (1.2) 

From (1) & (2) 

R ∝
l

A
 

R =
ρl

A
 

ρ = Resistivity (or)Specific Resistance 

ρ =
RA

l
=

Ω ∗ m2

m
= Ω − m 

Type of supplies:  

 Depends on the nature of the wave form power supplies are classified as  

1. Alternating current (AC) 

2. Direct current         (DC)      
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DC is a current that remains constant with time. 

AC is a current that varies sinusoidally with time. 

The minimum time after which the cycle of signal repeats is called as time period (T). 

 D.C A.C 

Representation V = K 
V = ASinωt 

Where ω = 2πf 

Time period ∞ T 

Frequency 0 
1

T
 

 

Faraday’s Laws: 

First law: 

Whenever conductor experiences the rate of change of flux, emf will be induced in that 

conductor and if there is a closed path, current will flow in that circuit. 

Second Law: 

The induced emf (e) is proportional to rate of change of flux. 

e ∝
d∅

dt
 → for one turn 

If N turns are there, then 

e ∝ N
d∅

dt
 

e = −N
d∅

dt
 

e = −
d(N∅)

dt
 

e = −
d(ψ)

dt
 

Here  is flux linkage, where ψ = N∅    

Here –ve sign indicates that induced emf opposes the current in that conductor which is given by 

Lenz’s Law. 

Lenz’s Law: 

The effect opposes the cause. 

 

 

V

ωt

DC
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Inductors: 

“An inductor consists of a coil of conducting wire”. 

Any conductor of electric current has inductive properties and maybe regarded as an inductor. 

But in order to enhance the inductive effect,a practical inductor is usually formed into a cylindrical 

coil with manyturns of conducting wire. 

 

Fig.1.2 Typical form of an Inductor 

Applications: 

Inductors find numerous applications in electronic and power systems. They are used in 

power supplies, transformers, radios, TVs, radars, and electric motors. 

Inductance: 

“The property of coil that opposes any change in the amount of current flowing through it is 

called as Inductance”. 

Flux linkage depends on the amount of current flowing through the coil. 

∴  ψ ∝ i 

    ψ = Li [L=Inductance of coil] 

According to Faraday’s Law 

e =
d(ψ)

dt
=

d

dt
(Li) 

e = L
di

dt
 

 

 

According to Lenz’s Law, induced emf should oppose the change in current flow through that coil. 

The direction of induced voltage is given by, 

 

 

 Energy stored in the inductance (E) = ∫ P dt 

      = ∫ P dt 

= ∫ vi dt 

= ∫ L
di

dt
i dt 

=
L

2
∫(2i)

di

dt
 dt 

L

+ -e

L

- +e

e = L
di

dt
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=
L

2
∫(2i)di 

E =
1

2
Li2 

 

 

Properties of inductor: 

1. V =  L 
di

dt
 

The induced voltage across an inductor is zero if the current through it is constant. That 

means an inductor acts as short circuit to dc. 

2. For small change in current within zero time (dt = 0) gives an infinite voltage across the 

inductor which is physically not at all feasible. 

3. In an inductor, the current cannot change abruptly. Since it does not allow the sudden change 

in current through it, it is called as current stiff element. 

4. An inductor behaves as open circuit just after switching across dc voltage. 

5. The inductor can store finite amount of energy, even if the voltage across the inductor is zero. 

It stores the energy in the form of magnetic field. 

6. The ideal inductor does not dissipate energy. The energy stored in it can be retrieved at a later 

time. The inductor takes power from the circuit when storing energy and delivers power to 

the circuit when returning previously stored energy. However, physical inductor dissipates 

power due to internal resistance. 

7. A practical, non-ideal inductor has a significant resistive component, as shown in Figure 

below. This is due to the fact that the inductor is made of a conducting material such as 

copper, which has some resistance. This resistance is called the winding resistanceRw, and it 

appears in series with the inductance of the inductor. The presenceRw of makes it both an 

energy storage device and an energy dissipation device. SinceRw is usually very small, it is 

ignored in most cases. The non-ideal inductor also has a winding capacitanceCwdue to the 

capacitive coupling between the conducting coils. Cwis very small and can be ignored in most 

cases, except at high frequencies. So, we will assume ideal inductors. 

 

Capacitor: 

Any two conducting surfaces separated by an insulating material (dielectric) is called as 

capacitor. 

E =
1

2
Li2 
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Fig.1.3.a A typical Capacitor   Fig.1.3.b A capacitor with applied voltage v. 

Applications: 

Capacitors are used extensively in electronics, communications, computers, and power 

systems. For example, they are used in the tuning circuits of radio receivers and as dynamic memory 

elements in computer systems. 

Capacitance: 

The ability of a capacitor to store charge is known as its capacitance. 

Charge stored in capacitor is proportional to applied voltage. 

∴ Q ∝ V 

Q = CV 

C =
Q

V
 

We know that, i =
dQ

dt
=

d

dt
(CV) 

 i = C
dV

dt
 

Although the capacitance C of a capacitor is the ratio of the charge Qper plate to the applied 

voltage V it does not depend on Q or V. It depends on the physical dimensions of the capacitor. For 

example, for the parallel-plate capacitor shown in Fig., the capacitance is given by 

C =
ϵA

d
 

Where,  A  = surface area of each plate,  

 d  = the distance between the plates, 

 ε = the permittivity of the dielectric material between the plates. 

Energy stored in capacitor: 

Let us consider ‘V’ voltage is applied across capacitor. At this instant, ‘W’ joules of work 

will be done in transferring 1C of charge from one plate to other. 

If small charge dq is transferred, then work done is 

dW = Vdq 

W = ∫ CVdq

V

0
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W =
1

2
CV2 

W =
1

2
C [

q

C
]

2

 

W =
1

2

q2

C
 

Properties of capacitor: 

1. It stores energy in the form of electrostatic field. 

2. The current in a capacitor is zero, if the voltage across it is constant, that means the capacitor 

acts as an open circuit to dc. 

3. A small change in voltage across a capacitance within zero time gives an infinite current 

through the capacitor, which is physically impossible. 

i. Capacitor doesn’t allow the sudden change in voltage. So, it is called as voltage stiff 

element. 

ii. A capacitor behaves as short circuit just after switching across dc voltage. 

4. The capacitor can store a finite amount of energy, even if the current through it is zero. 

5. A pure (or Ideal) capacitor never dissipates energy but only stores it hence it is called non-

dissipative element. 

6. A real, nonideal capacitor has a parallel-model leakage resistance, as shown in Fig. below. 

The leakage resistance may be as high as 100 MΩ and can be neglected for most practical 

applications consider as an Ideal Capacitor. 

 

Voltage and Current Sources : 

 

Classification of Sources 

 

 

Independent

Sources

Dependent

Sources

Voltage Current Linear

Controlled
Linear

Non Controlled
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Independent Voltage Source 

When the terminal voltage of a source is independent of load element, it is called as 

independent ideal voltage source. (Or) Ideal voltage source is one which delivers energy to the load 

at a constant terminal voltage, irrespective of the current drawn by the load. 

 

 

 

 

 

 

Practical voltage source having, its internal resistance(Rs). Whenever load current increases, 

the drop across Rs will increase. Therefore, terminal voltage will reduce as load current rises. 

VT = VS − ISRS 

 

Ideal Current Source. 

 It is a two terminal device which delivers constant current to the network connected across its 

terminals. i.e. current supplied by the source is independent of its terminal voltage. (Or) An ideal 

current source is one, which delivers energy with a constant current to the load, irrespective of the 

terminal voltage across the load. 

Practical Current Source 

A Practical source always possesses a very small value of internal resistance r. The internal 

resistance of a voltage source is always connected in series with it & for a current source; it is 

always connected in parallel with it. 

VCVS

CCCS

VCCS

CCVS

+
- VTVS

IL

IL

VSVT
=

IL

VS

VT

ILRS

V

+
- VTVS

Rs

IL

=

VT

IL I

I VT

IL

+

-
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 As the value of the internal resistance of a practical current source is very small, a practical 

current source is also assumed to deliver a constant current, irrespective of the terminal voltage 

across the load connected to it.  

 

Dependent (or) Controlled Source 

 A controlled voltage/ current source is one whose terminal voltage or current is a function of 

some other voltage or current. These devices have two pairs of terminals. One pair corresponds to the 

controlling quantity & other pair represents controlled quantity. 

 Controlled quantity is directly proportional to controlling quantity. 

 

Here, K = Constant 

  

 
 

 

 The constants of proportionalities are written as B, g, a, r in which B & a has no units, r has 

units of ohm & g units of mhos. 

  Independent sources actually exist as physical entities such as battery, a dc generator & an 

alternator. But dependent sources are used to represent electrical properties of electronic devices 

such as OP-AMPS & Transistors. 

 

 

I VT

IL

+

-

Rs

+
-

+
-

Voltage controlled

Voltage source

Current controlled

Voltage source

Voltage controlled

Current source

Current controlled

Current source

KV KI KV KI

VT

IL I

IL

V

RS
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V-I Relation for passive elements 

 

Circuit elements Voltage(V) Current(A) Power(W) 

Resistor R (Ohms Ω) V = RI I =
V

R
 P = i2R 

Inductor L (Henry H) V = L
di

dt
 

I =
1

L
∫ vdt + i0 

Where i0 is the initial 

currentthrough inductor 

P = Li 
di

dt
 

Capacitor C (Farad F) 

I =
1

C
∫ idt + v0  

Where v0 is the 

initial voltage across 

capacitor 

I = C 
dv

dt
 P = CV 

dv

dt
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Elements of Electrical Circuits 

UNIT – II 

Network Equations and Reduction Techniques   

Objectives:   

 To analyze electrical circuits using voltage division 

 To analyze electrical circuits using current division 

 To analyze electrical circuits using reduction techniques techniques.  

 To analyze electrical circuits using Mesh and Nodal methods. 

Syllabus:  Network Equations and Reduction Techniques   

Ohms Law, Kirchhoff’s  Voltage Law, Kirchhoff’s Current Law, Source Transformation, - network 

reduction  Techniques Series, Parallel, and Series Parallel, Star to Delta & Delta to Star 

Transformations, Nodal Analysis, Mesh Analysis, Super node,  Super mesh for Dc Excitations. 

Outcomes: 

On completion, the student should be able to:  

 Understand various terminology used in electrical circuits. 

 Classify network elements and understand voltage-current relationships of R, L, C elements. 

 Understand Kirchhoff’s Laws and Solve problems using voltage and current division techniques. 

 Differentiate between ideal/practical/dependent and independent sources and their 

characteristics. 

 Solve problems using source transformation technique, Mesh & Nodal methods of analysis. 

 

Learning Material 

Ohm’s Law: 

             “Under constant temperature and pressure, current flowing through a conductor is directly 

proportional to the voltage applied across it”. 

i ∝ V 

i =
V

R
 

Where, R=Resistance of conductor 

Power dissipated by Resistor (P)  =  V ∗ i 

=
V2

R
(or)i2R 

If V is positive, then P =
(+V)2

R
=

V2

R
 

      = (+i)2R = i2R  (1.3) 

If V is Negative, then P = (−i)2R = i2R 

      =
(−V)2

R
=

V2

R
   (1.4) 

Conclusion: 

From (1.3) & (1.4) power dissipated by resistor remains same. 

 It is independent of direction of applied voltage (or) current. 

 

Type of supplies:  

R
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 Depends on the nature of the wave form power supplies are classified as  

1. Alternating current (AC) 

2. Direct current         (DC)      

   

DC is a current that remains constant with time. 

AC is a current that varies sinusoidally with time. 

The minimum time after which the cycle of signal repeats is called as time period (T). 

 D.C A.C 

Representation V = K 
V = ASinωt 

Where ω = 2πf 

Time period ∞ T 

Frequency 0 
1

T
 

Kirchhoff’s Laws: 

For analyzing a large variety of electric circuits. These laws are formally known as Kirchhoff’s 

current law (KCL) and Kirchhoff’s voltage law (KVL). 

Kirchhoff’s voltage Law: (KVL) 

 This law is related to emf’s and voltage drops in a circuit. It stated as“in an electrical circuit, 

algebraic sum of all the voltages in a closed path is Zero”. 

−V + V1 + V2 + V3 = 0 

Or, Sum of voltage drops=Sum of 

voltage rises 

V = V1 + V2 + V3 

 

 

 KVL is independent of 

nature of element. 

Kirchhoff’s current Law: 

This law is related to current at the junction points a circuit. It is stated as “In a circuit, at 

node at any instant the algebraic sum of current flowing towards a 

junction in circuit is Zero”. 

i1 + i2 − i3 − i4 = 0 

dQ1

dt
+

dQ2

dt
−

dQ3

dt
−

dQ4

dt
= 0 

Q1 + Q2 − Q3 − Q4 = 0 

 According to law of conservation of energy, the net charge at node is Zero. 

V

ωt

DC

V

V1 V2 V3

i

 i1

i2
i4

i3

V = V1 + V2 + V3 
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 KCL is independent of nature of element. 

An alternative form of KCL, “The sum of the currents entering a node is equal to the sum of 

the currents leaving the node”. 

i1 + i2 = i3 + i4 

Source transformation 

 A current source or a voltage source drives current through its load resistance and the 

magnitude of the current depends on the value of the load resistance. 

 Consider a practical voltage source and a practical current source connected to the same load 

resistance RL as shown in the figure  

 

 Ri in figure represents the internal resistance of the voltage source VS and current source IS. 

Two sources are said to be identical, when they produce identical terminal voltage VL and load 

current IL. 

The circuits in figure represent a practical voltage source & a practical current source 

respectively, with load connected to both the sources. The terminal voltage VL and load currentIL 

across their terminals are same. 

Hence the practical voltage source & practical current source shown in the dotted box of 

figure are equal. The two equivalent sources should also provide the same open circuit voltage & 

short circuit current. 

From fig (a)     From fig (b) 

IL =
Vs

(Ri+RL)
      IL = I

Ri

Ri+RL
 

∵
Vs

(Ri + RL)
= I 

Ri

(Ri + RL)
 

Vs  =  IRi   or  I =  
Vs

Ri
 

Hence a voltage source Vs in 

series with its internal resistance Ri 

can be converted into a current source 

I =
Vs

Ri
, with its internal resistance Ri 

connected in parallel with it. Similarly 

a current source I in parallel with its 

internal resistance Ri can be converted 

into a voltage source V = IRi in series 

with its internal resistance Ri. 

Network Reduction Techniques 

Series and Parallel connection 
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Two or more elements are in series if they exclusively share a single node and consequently 

carry the same current. Two or more elements are in parallel if they are connected to the same two 

nodes and consequently have the same voltage across them. 

Elements are in series when they are chain-connected or connected sequentially, end to end. 

For example, two elements are in series if they share one common node and no other element is 

connected to that common node. Elements in parallel are connected to the same pair of terminals.  

Series Resistors circuit:   

Let us consider ‘n’ Resistors are connected in series. 

Apply KVL 

−V + V1 + V2 + V3 + ⋯ ⋯ ⋯ + Vn = 0 

−iReq + iR1 + iR2 + iR3 + ⋯ ⋯ ⋯ + iRn = 0 

Req = R1 + R2 + R3 + ⋯ ⋯ ⋯ + Rn 

Note: If ‘n’ Resistors are in series, then equivalent Resistance will be greaterthanR1, R2, R3… Rn. 

Parallel Resistors circuit: 

Apply KCL 

−i + i1 + i2 + i3 + ⋯ ⋯ + in = 0 

−
V

Req
+

V

R1
+

V

R2
+ ⋯ ⋯ +

V

Rn
= 0 

 When ‘n’ Resistances are in parallel, equivalent Resistance is smaller than all Resistances. 

NOTE: 

 When ‘n’ Resistances are in series, the current through all the Resistors are same. 

 When ‘n’ Resistors are in parallel, then voltage across all resistors is same. 

Inductive circuits: 

Series Inductors circuit: 

Leq = L1 + L2 + ⋯ ⋯ + Ln 

 

 

 

Parallel Inductors circuit: 

1

Leq
=

1

L1
+

1

L2
+ ⋯ ⋯ +

1

Ln
 

 

Capacitive circuits: 

Series circuit: 

Apply KVL 

R1 R2 Rn

ini1 i2

V

i

L3L2L1

Leq

Ln

L1 L2 L3 LnLeq

C1 C2 C3 Cn

Ceq

R1 R2 R3 Rn

i

V1 V2 V3 Vn

V
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V = V1 + V2 + V3 + ⋯ ⋯ + Vn 

Q

Ceq
=

Q

C1
+

Q

C2
+ ⋯ ⋯ +

Q

Cn
 

1

Ceq
=

1

C1
+

1

C2
+ ⋯ ⋯ +

1

Cn
 

 

 

 

Parallel circuit: 

Apply KCL 

−i + i1 + i2 + i3 + ⋯ ⋯ + in = 0 

−Q + Q1 + Q2 + ⋯ ⋯ + Qn = 0 

 

−CeqV + C1V + C2V + ⋯ ⋯ + CnV

= 0 

−Ceq + C1 + C2 + ⋯ ⋯ + Cn = 0 

 

 

Ideal voltage source connected in series 

 

The equivalent single ideal voltage source is given by V = V 1 + V2 

Any number of ideal voltage sources connected in series can be represented by a single ideal 

voltage sum taking in to account the polarities connected together in to consideration. 

Practical voltage source connected in series Ideal voltage source connected in parallel 

    

When two ideal voltage sources of emf’s V1 & V2 are connected in parallel, what voltage 

appears across its terminals is ambiguous. Hence such connections should not be made.  

However if V1 = V2= V, then the equivalent voltage some is represented by V. 

In that case also, such a connection is unnecessary as only one voltage source serves the 

purpose. 

+
-V1

+
-V2

+
- V = V  + V1 2

+
-V1

+
-V2

+
-Vr2

1r

r = r  + r1 2

V = V  + V1 2
1

+
-V +

-V2

ini1 i2

V

i

C1 C2 Cn

1

Ceq
=

1

C1
+

1

C2
+ ⋯ ⋯ +

1

Cn
 

Ceq = C1 + C2 + ⋯ ⋯ + Cn 
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Practical voltage sources connected in parallel 

 

Ideal current sources connected in series 

 

When ideal current sources are connected in series, what current flows through the line is 

ambiguous. Hence such a connection is not permissible. 

However, if I1 + I2 = I, then the current in the line is I. 

But, such a connection is not necessary as only one current source serves the purpose. 

Practical current sources connected in series: 

 

Ideal current sources connected in parallel 

 

Two ideal current sources in parallel can be replaced by a single equivalent ideal current 

source. 

Practical current sources connected in parallel 

+
-V1

1r

+
-V2

2r

I
V

r
1

1
=

V

r
2

2
=1 I2 r2r1

I1 I2+
r1 r2

r1+ r2
=r

+
-

r

V = Ir

I1

I2

I1

I2 r2

r1

+
-

2r

+
-

1r

V2= r2

V1= r1

I2

I1

+
- V = V  + V1 2

r = r  + r1 2
V
r=I r

I1 I2 I1 I2+
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Voltage division Rule: 

It is applicable for series circuit. 

i =
V

R1 + R2
 

V1 = iR1 = (
V

R1 + R2
) R1 

V2 = iR2 = (
V

R1 + R2
) R2 

i.e When ‘n’ Resistors R1, R2, R3… Rn are in series and V1, V2, V3, ⋯ ⋯ Vn are 

voltage drops across resistors, then 

V1 = (
V

R1 + R2 + ⋯ ⋯ + Rn
) R1 

Vn = (
V

R1 + R2 + ⋯ ⋯ + Rn
) Rn 

 

 

 

Current division Rule: 

i = i1 + i2 + i3 + ⋯ ⋯ + in 

Req =
V

i
=

R1R2

R1 + R2
 

i =
V

Req
=

V(R1 + R2)

R1R2
 

i2 =
V

R2
=

V(R1 + R2)R1

R1R2(R1 + R2)
 

i2 =
V(R1 + R2)

R1R2
∗

R1

R1 + R2
 

i2 =
i ∗ R1

R1 + R2
 

i1 =
i ∗ R2

R1 + R2
 

 

 

 

Case (i): 

i1 =
i ∗ R2

R1 + R2
= 0 

I1 I2 I1 I2+r1
r2

r1 r2

r1+ r2
=r

R1 R2

i

V1 V2

V

R1 R2

i1 i2

V

i

R1

i1 i2

V

i

R2=0

Vn = (
V

R1 + R2 + ⋯ ⋯ + Rn
) Rn 

i2 =
i ∗ R1

R1 + R2
&i1 =

i ∗ R2

R1 + R2
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i2 =
i ∗ R1

R1 + R2
= i 

Observation: Current always choose lower Resistance path. 

Case (ii) 

i1 =
i ∗ R2

R1 + R2
= i 

i2 =
i ∗ R1

R1 + R2
= 0 

Note: Current will not flow through open circuit. 

Star – Delta / Delta – Star Transformation (⋏ −∆ / ∆ −⋏) 

 Let us consider three resistors are connected in star between the points A, B, C. So these 

resistors considered as RA, RB, RC. RAB , RBC, RCA be the resistances in Delta. 

From the star connection, 

  RAB = RA + RB (1.6) 

In the same way 

  RBC = RB + RC (1.7) 

  RCA = RC + RA (1.8) 

  

From Delta connection 

RAB = Rab ∥ (Rac + Rbc) 

 

RAB =
Rab∗(Rac+Rbc)

Rab+Rbc+Rca
 (1.9) 

In the same way 

RBC = Rbc ∥ (Rab + Rac) 

RBC =
Rbc∗(Rab+Rac)

Rab+Rbc+Rca
   (1.10) 

RCA = Rca ∥ (Rab + Rbc) 

R1

i1 i2

V

i

R2=infinity

R Rab ca

B C

A

Rbc

R

R R

A

B C

A

B C

R

R

R

A

B

C

A

B C

R

R

ab

ca

B

C

A

Rbc
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RCA =
Rca∗(Rab+Rbc)

Rab+Rbc+Rca
   (1.11) 

From (1.6) & (1.9) 

RA + RB =
Rab∗(Rac+Rbc)

Rab+Rbc+Rca
   (1.12) 

From (1.7) & (1.10) 

RB + RC =
Rbc∗(Rab+Rac)

Rab+Rbc+Rca
   (1.13) 

From (1.8) & (1.11) 

RC + RA =
Rca∗(Rab+Rbc)

Rab+Rbc+Rca
   (1.14) 

(1.12) - (1.13) + (1.14), then 

2RA =
RabRac + RabRbc − RbcRab − RbcRac + RcaRab + RcaRbc

Rab + Rbc + Rca
 

2RA =
2RabRac

Rab + Rbc + Rca
 

RA =
RabRac

Rab+Rbc+Rca
   (1.15) 

 

 

Substitute (1.15) in (1.12) & (1.14) 

RA + RB =
Rab ∗ (Rac + Rbc)

Rab + Rbc + Rca
 

RabRac

Rab + Rbc + Rca
+ RB =

Rab ∗ (Rac + Rbc)

Rab + Rbc + Rca
 

RB =
Rab ∗ (Rac + Rbc)

Rab + Rbc + Rca
−

RabRac

Rab + Rbc + Rca
 

RB =
RabRbc

Rab+Rbc+Rca
   (1.16) 

 

 

 

RC + RA =
Rca ∗ (Rab + Rbc)

Rab + Rbc + Rca
 

 

RC +
RabRac

Rab + Rbc + Rca
=

Rca ∗ (Rab + Rbc)

Rab + Rbc + Rca
 

RC =
Rca ∗ (Rab + Rbc)

Rab + Rbc + Rca
−

RabRac

Rab + Rbc + Rca
 

RC =
RcaRbc

Rab+Rbc+Rca
   (1.17) 

 

 

 

RA =
RabRac

Rab + Rbc + Rca
 

RB =
RabRbc

Rab + Rbc + Rca
 

RC =
RcaRbc

Rab + Rbc + Rca
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(1.15) ∗ (1.16)

(1.17)
⟹

RARB

RC
=

RabRac

Rab+Rbc+Rca
∗

RabRbc

Rab+Rbc+Rca

RcaRbc

Rab+Rbc+Rca

 

RARB

RC
=

(Rab)2

(Rab + Rbc + Rca)
 

RARB

RC
=

(Rab)2Rbc

(Rab + Rbc + Rca)Rbc
 

RARB

RC
=

Rab

Rbc
∗ RB 

 

 

In the same way 

 

 

Rab =
RB

RC
Rac   (1.18) 

 

 

 

Rac =
RA

RB
Rbc   (1.19) 

Substitute (1.18) & (1.19) in (1.15) 

RA =

RB

RC
Rac ∗

RA

RB
Rbc

RB

RC
Rac + Rbc +

RA

RB
Rbc

 

RA =

RA

RC
Rbc

RB

RC
+ 1 +

RA

RB

 

After solving above equation 

Rbc = RB + RC +
RBRC

RA
 

 

 

In the same way, 

 

 

 

 

 

 

Nodal and Mesh Analysis (Nodal Voltage and Mesh Current Analysis) 

The simple series & parallel circuits can be solved by using ohm`s law & Kirchhoff’s law. 

RA

RC
=

Rab

Rbc
 

 
RB

RC
=

Rab

Rac
 

 

RA

RB
=

Rac

Rbc
 

 

Rbc = RB + RC +
RBRC

RA
 

 

Rab = RA + RB +
RARB

RC
 

 

Rac = RA + RC +
RARC

RB
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If the circuits are complex, conducting several sources & a large number of elements, they 

may be simplified using star-delta transformation. There are also other effective solving complex 

electric circuits. 

 Mesh current or loop current analysis & node voltage analysis are the two very effective 

methods of solving complex electric circuits. We have various network theorems which are also 

effective alternate methods to solve complex electrical circuits. 

1. Node voltage analysis 

2. Mesh current or loop current analysis 

Nodal Analysis (KCL + ohm’s Law) 

In Nodal analysis, we will apply Kirchhoff’s current law to determine the potential difference 

(voltage) at any node with respect to some arbitrary reference point in a network. Once the potentials 

of all nodes are known, it is a simple matter to determine other quantities such as current and power 

within the network. 

Simple steps: 

1. Identify the Number of nodes when current is dividing and assign voltage to nodes. 

2. Write KCL equation at each node and except as reference node. 

3. Write ohm’s law form for current in nodal equation &solve the equation.   

In other way the steps used in solving a circuit using Nodal analysis are explained elaborately as 

follows: 

i. Arbitrarily assign a reference node within the circuit and indicate this node as ground. The 

reference node is usually located at the bottom of the circuit, although it may be located 

anywhere. 

ii. Convert each voltage source in the network to its equivalent current source. This step, 

although not absolutely necessary, makes further calculations easier to understand. 

iii. Arbitrarily assign voltages (V1, V2, . . . Vn) to the remaining nodes in the circuit. (Remember 

that you have already assigned a reference node, so these voltages will all be with respect to 

the chosen reference.) 

iv. Arbitrarily assign a current direction to each branch in which there is no current source. 

Using the assigned current directions, indicate the corresponding polarities of the voltage 

drops on all resistors. 

v. With the exception of the reference node (ground), apply Kirchhoff’s current law at each of 

the nodes. If a circuit has a total of n+1 nodes (including the reference node), there will be n 

simultaneous linear equations. 

vi. Rewrite each of the arbitrarily assigned currents in terms of the potential difference across a 

known resistance. 

vii. Solve the resulting simultaneous linear equations for the voltages (V1, V2, . . . Vn). 

Mesh analysis (KVL + ohm’s Law) 

The Mesh Current Method, also known as the Loop Current Method, is quite similar to the 

Branch Current method in that it uses simultaneous equations, Kirchhoff’s Voltage Law, Kirchhoff’s 

Current Law and Ohm’s Law to determine unknown currents in a network. It differs from the Branch 

Current method in that it does not use Kirchhoff’s Current Law, and it is usually able to solve a 

circuit with less unknown variables and less simultaneous equations, which is especially nice if 

you’re forced to solve without a calculator. 

A mesh is a loop which does not contain any other loops within it. 

 

Simple Steps: 

1. Identify the Number of Loops/ Meshes. 
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2. Assign the currents in each loop. 

3. Apply KVL for each mesh and write ohm’s law form. 

4. Solve the equations and obtain mesh currents. 

Step 1: Number of loops is identified as 2. 

Step 2: Currents i1 and i2 are assigned to each loop 

in clockwise direction. 

Step 3:  

Apply KVL for loop (1) 

−V1 + i1R1 + (i1 − i2)R2 = 0 

i1(R1 + R2) − i2R2 = V1  

  (1.20) 

Apply KVL for loop (2) 

V2 + i2R3 + (i2 − i1)R2 = 0 

−i1R2 + i2(R2 + R3) = −V2    (1.21) 

Step 4: Solve the equations 1.20 and1.21 we get the loop currents i1 and i2. From loop 

currents we can calculate the branch currents also. 

In other way the steps used in solving a circuit using mesh analysis are explained elaborately as 

follows: 

i. Arbitrarily assign a clockwise current to each interior closed loop in the network. Although 

the assigned current may be in any direction, a clockwise direction is used to make later work 

simpler. 

ii. Using the assigned loop currents, indicate the voltage polarities across all resistors in the 

circuit. For a resistor that is common to two loops, the polarities of the voltage drop due to 

each loop current should be indicated on the appropriate side of the component. 

iii. Applying Kirchhoff’s voltage law, write the loop equations for each loop in the network. Do 

not forget that resistors that are common to two loops will have two voltage drops, one due to 

each loop. 

iv. Solve the resultant simultaneous linear equations. 

v. Branch currents are determined by algebraically combining the loop currents that are 

common to the branch. 

Nodal Versus Mesh Analysis 

Both nodal and mesh analyses provide a systematic way of analyzing a complex network. 

The choice of the better method is dictated by two factors. 

1. The first factor is the nature of the particular network. Networks that contain many series-

connected elements, voltage sources, or super meshes are more suitable for mesh analysis, 

whereas networks with parallel-connected elements, current sources, or super nodes are more 

suitable for nodal analysis. Also, a circuit with fewer nodes than meshes is better analyzed 

using nodal analysis, while a circuit with fewer meshes than nodes is better analyzed using 

mesh analysis. The key is to select the method that results in the smaller number of equations. 

2. The second factor is the information required. If node voltages are required, it may be 

expedient to apply nodal analysis. If branch or mesh currents are required, it may be better to 

use mesh analysis. 

It is helpful to be familiar with both methods of analysis, for at least two reasons. First, one 

method can be used to check the results from the other method, if possible. Second, since each 

method has its limitations, only one method may be suitable for a particular problem. 

Nodal Analysis with Voltage Sources 

R1

V1

R2

R3

V2
i1

i2
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Now we see how voltage sources affect nodal analysis. We use the circuit in Fig. 1.4 for 

illustration. Consider the following two possibilities. 

 

Figure1.4 A circuit with Super node 

Case 1:If a voltage source is connected between the reference node and a non-reference node, we 

simply set the voltage at the non-reference node equal to the voltage of the voltage source. In Fig. 1. 

for example, 

V1 = 10V 

Thus, our analysis is somewhat simplified by this knowledge of the voltage at this node. 

Case 2 (Supernode): If the voltage source (dependent or independent) is connected between two 

non-reference nodes, the two non-reference nodes form a generalized node or super node; we apply 

both KCL and KVL to determine the node voltages. 

In the above circuit nodes 2 and 3 form a super node. We analyze a circuit with super nodes 

using the same steps mentioned in the nodal analysis except that the super nodes are treated 

differently. Why because an essential component of nodal analysis is applying KCL, which requires 

knowing the current through each element. There is no way of knowing the current through a voltage 

source in advance. However, KCL must be satisfied at a super node like any other node.  

KCL at Super node 

i1 + i4 = i2 + i3 

V1 − V2

2
+

V1 − V3

4
=

V2 − 0

8
+

V3 − 0

6
 

To apply Kirchhoff’s voltage law to the super node were draw the circuit as shown in Fig. 1.5 

KVL at Super node 

−V2 + 5 + V3 = 0       ⟹       V2 − V3 = 5 

 

Fig.1.5 Applying KVL at super node 
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At remaining nodes (except Super node and reference node) apply KCL and solve all the 

equations we get the nodal voltages. 

Properties of a super node: 

1. The voltage source inside the super node provides a constraint equation needed to solve for 

the node voltages. 

2. A super node has no voltage of its own. 

3. A super node requires the application of both KCL and KVL. 

Mesh Analysis with Current Sources 

Applying mesh analysis to circuits containing current sources (dependent or independent) 

may appear complicated. But it is actually much easier because the presence of the current sources 

reduces the number of equations. Consider the following two possible cases. 

CASE 1: 

It is about current source exists only in one mesh. Consider the circuit in Fig. 1.6. It is clear 

that in mesh2 

i2 = −5A 

Write a mesh equation for the mesh1 

−10 + 4i1 + 6(i1 − i2) = 0      ⟹     i1 = −2A 

 

Fig.1.6 A circuit with current source 

When a current source exists between two meshes: Consider the circuit in Fig. 1.7(a), for 

example. We create a super mesh by excluding the current source and any elements connected in 

series with it, as shown in Fig. 1(b). Thus, 

  

  
Figure1.7 (a) Two meshes having a current  Figure 1.7(b) a super mesh, created by excluding the  
                      source in common              current source 

As shown in Fig. 1.7(b), we create a super mesh as the periphery of the two meshes and treat 

it differently. (If a circuit has two or more super meshes that intersect, they should be combined to 

form a larger super mesh.) Why treat the super mesh differently? Because mesh analysis applies 

KVL—which requires that we know the voltage across each branch—and we do not know the 

voltage across a current source in advance. However, a super mesh must satisfy KVL like any other 

mesh. Therefore, applying KVL to the super mesh in Fig. 1.7(b) gives  
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−20 + 6i1 + 10i2 + 4i2 = 0 

6i1 + 14i2 = 20 

We apply KCL to a node in the branch where the two meshes intersect. 

Applying KCL to node 0 in Fig. 1.7(a) gives  i2 = i1 + 6 

Solve above two equations we get the solution as  i1 = −3.2A,          i2 = 2.8A 
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ELEMENTS OF ELECTRICAL CIRCUITS 

UNIT – III (Introduction to Single Phase AC Circuits) 

Objectives:   

 To understand the concepts of RMS, average values for periodic waves. 

 To understand the concepts of phase and phase differences in AC circuits. 

 To understand the complex and polar form representations of complex quantities and J notation. 

Syllabus: 

Generation of alternating sinusoidal quantities - R.M.S, Average values and form factor for different periodic 

wave forms – sinusoidal alternating quantities – Phase and Phase difference – Complex and polar forms of 

representations, J Notation. 

Outcomes: 

On completion the student should be able to:  

 Understand various terminologies such as average, RMS, form factor, peak factor used in AC 

circuits. 

 Evaluate various parameters of alternating quantities. 

 Analyse the phase and phase difference in AC quantities. 

 

Learning Material 

Definition of Alternating Quantity: 

 

An alternating quantity changes continuously in magnitude and alternates in direction at regular intervals 

of time. Important terms associated with an alternating quantity are defined below. 

1.Amplitude: 

It is the maximum value attained by an alternating quantity. Also called as maximum or peak 

value. 

2.Time Period (T): 

It is the Time Taken in seconds to complete one cycle of an alternating quantity. 

3. Instantaneous Value: 

It is the value of the quantity at any instant. 

4. Frequency (f): 

It is the number of cycles that occur in one second. The unit for frequency is Hz or cycles/sec.The 

relationship between frequency and time period can be derived as follows. 

Time taken to complete f cycles = 1 second 

Time taken to complete 1 cycle = 1/f second 

T = 1/f 
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Generation of sinusoidal AC voltage: 

Consider a rectangular coil of N turns placed in a uniform magnetic field as shown in the figure. The 

coil is rotating in the anticlockwise direction at an uniform angular velocity of  rad/sec. 

 

When the coil is in the vertical position, the flux linking the coil is zero because the plane of the coil 

is parallel to the direction of the magnetic field. Hence at this position, the emf induced in the coil is 

zero. When the coil moves by some angle in the anticlockwise direction, there is a rate of change of 

flux linking the coil and hence an emf is induced in the coil. When the coil reaches the horizontal 

position, the flux linking the coil is maximum, and hence the emf induced is also maximum. When 

the coil further moves in the anticlockwise direction, the emf induced in the coil reduces. Next when 

the coil comes to the vertical position, the emf induced becomes zero. After that the same cycle 

repeats and the emf is induced in the opposite direction. When the coil completes one complete 

revolution, one cycle of AC voltage is generated.  The generation of sinusoidal AC voltage can also 

be explained using mathematical equations. Consider a rectangular coil of N turns placed in a 

uniform magnetic field in the position shown in the figure. The maximum flux linking the coil is in 

the downward direction as shown in the figure. This flux can be divided into two components, one 

component acting along the plane of the coil Φmaxsinωt and another component acting perpendicular 

to the plane of the coil Φmaxcosωt.    

 
The component of flux acting along the plane of the coil does not induce any flux in the coil. Only the 

component acting perpendicular to the plane of the coil i.e. Φmaxcosωt induces an emf in the coil. Hence 

the emf induced in the coil is a sinusoidal emf. This will induce a sinusoidal current in the circuit given 

by 

∅ = 𝜙𝑚𝑎𝑥𝑐𝑜𝑠𝜔𝑡 

𝑒 = −𝑁 
𝑑𝜙

𝑑𝑡
= −𝑁

𝑑

𝑑𝑡
𝜙𝑚𝑎𝑥𝑐𝑜𝑠𝜔𝑡 = 𝑁𝜙𝑚𝑎𝑥𝜔𝑠𝑖𝑛𝜔𝑡 = 𝐸𝑚𝑠𝑖𝑛𝜔𝑡 

Hence the emf induced in the coil is a sinusoidal emf. This will induce a sinusoidal current in the circuit 

given by 

𝑖 = 𝐼𝑚𝑠𝑖𝑛𝜔𝑡  
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Angular Frequency (ɷ): 

 

Angular frequency is defined as the number of radians covered in one second(ie the angle covered by 

the rotating coil). The unit of angular frequency is rad/sec. 

𝜔 =  
2𝜋

𝑇
= 2𝜋𝑓 

Average Value 

The arithmetic average of all the values of an alternating quantity over one cycle is called its average 

value 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒

𝐵𝑎𝑠𝑒
 

𝑉𝑎𝑣𝑔 =
1

2𝜋
∫ 𝑣 𝑑(𝜔𝑡)

2𝜋

0

 

For Symmetrical waveforms, the average value calculated over one cycle becomes equal to zero 

because the positive area cancels the negative area. Hence for symmetrical waveforms, the average 

value is calculated for half cycle. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 ℎ𝑎𝑙𝑓 𝑐𝑦𝑐𝑙𝑒

𝐵𝑎𝑠𝑒
  

𝑉𝑎𝑣𝑔 =
1

𝜋
∫ 𝑣 𝑑(𝜔𝑡)

𝜋

0

 

 

Average value of a sinusoidal current 

 

 

𝑖 = 𝐼𝑚𝑠𝑖𝑛ω𝑡  

𝐼𝑎𝑣𝑔 =
1

𝜋
∫ 𝑖𝑑(𝜔𝑡)

𝜋

0

=
1

𝜋
∫ 𝐼𝑚 𝑠𝑖𝑛𝜔𝑡 𝑑(𝜔𝑡)

𝜋

0

=
2𝐼𝑚

𝜋
= 0.637𝐼𝑚 

 

RMS or Effective Value 

The effective or RMS value of an alternating quantity is that steady current (dc) which when flowing 

through a given resistance for a given time produces the same amount of heat produced by the 

alternating current flowing through the same resistance for the same time. 

        

𝑅𝑀𝑆 =  √
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑐𝑢𝑟𝑣𝑒

𝐵𝑎𝑠𝑒
 

𝑉𝑟𝑚𝑠 = √
1

2𝜋
∫ 𝑣2𝑑(𝜔𝑡)

2𝜋

0
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RMS value of a sinusoidal current 

 

𝑖 = 𝐼𝑚𝑠𝑖𝑛ω𝑡 , 𝐼𝑟𝑚𝑠 = √
1

2𝜋
∫ 𝑖2𝑑(𝜔𝑡)

2𝜋

0

= √
1

𝜋
∫ 𝐼𝑚

2 𝑠𝑖𝑛2𝜔𝑡 𝑑(𝜔𝑡)
𝜋

0

=
𝐼𝑚

√2
= 0.707𝐼𝑚 

 

Form Factor: 

The ratio of RMS value to the average value of an alternating quantity is known as Form Factor 

𝐹𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑅𝑀𝑆 𝑉𝑎𝑙𝑢𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒
 

Peak Factor or Crest Factor: 

The ratio of maximum value to the RMS value of an alternating quantity is known as the peak factor 

𝑃𝑒𝑎𝑘 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒

𝑅𝑀𝑆 𝑉𝑎𝑙𝑢𝑒
 

 

For a sinusoidal waveform  𝐼𝑎𝑣𝑔 =
2𝐼𝑚

𝜋
= 0.637𝐼𝑚 

𝐼𝑟𝑚𝑠 =
𝐼𝑚

√2
= 0.707𝐼𝑚 

𝐹𝐹 =
𝐼𝑟𝑚𝑠

𝐼𝑎𝑣𝑔
= 1.11 

𝑃𝐹 =
𝐼𝑚

𝐼𝑟𝑚𝑠
= 1.414 

Phasor Representation: 

An alternating quantity can be represented using 

(i) Waveform 

(ii) Equations 

(iii) Phasor 

A sinusoidal alternating quantity can be represented by a rotating line called a Phasor. A phasor is a 

line of definite length rotating in anticlockwise direction at a constant angular velocity. The 

waveform and equation representation of an alternating current is as shown. This sinusoidal quantity 

can also be represented using phasors. 

 

I = im sinɷt 

Draw a line OP of length equal to Im. This line OP rotates in the anticlockwise direction with an 

uniform angular velocity ɷ rad/sec and follows the circular trajectory shown in figure. Atany instant, 

the projection of OP on the y-axis is given by OM=OPsinθ =. I = im sinɷt 

 Hence the line OP is the phasor representation of the sinusoidal current 
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Phase: 

Phase is defined as the fractional part of time period or cycle through which the quantity has 

advanced from the selected zero position of reference. 

 
Phase of +Em is π/2 rad or T/4 sec 

Phase of -Em is 3π/2 rad or 3T/4 sec 

Phase Difference: 

When two alternating quantities of the same frequency have different zero points, they are said to 

have a phase difference. The angle between the zero points is the angle of phase difference. 

 

In Phase 

 

Two waveforms are said to be in phase, when the phase difference between them is zero. That is the 

zero points of both the waveforms are same. The waveform, phasor and equation representation of 

two sinusoidal quantities which are in phase is as shown. The figure shows that the voltage and 

current are in phase. 
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V=Vm Sinɷt 

I = Im sinɷt 

 

Lagging: 

In the figure shown, the zero point of the current waveform is after the zero point of the voltage 

waveform. Hence the current is lagging behind the voltage. The waveform, phasor and equation 

representation is as shown. 

 

V=Vm Sinɷt 

I = Im sin(ɷt-Ф) 

 

Leading 

In the figure shown, the zero point of the current waveform is before the zero point of the voltage 

waveform. Hence the current is leading the voltage. The waveform, phasor and equation 

representation is as shown. 

 

V=Vm Sinɷt 

I = Im sin(ɷt+Ф) 

 

Complex numbers: 

The mathematics used in Electrical Engineering to add together resistances, currents or DC voltages 

uses what are called “real numbers”. But real numbers are not the only kind of numbers we need to 

use especially when dealing with frequency dependent sinusoidal sources and vectors. As well as 

using normal or real numbers, Complex Numbers were introduced to allow complex equations to be 

solved with numbers that are the square roots of negative numbers, √-1. 

In electrical engineering this type of number is called an “imaginary number” and to distinguish an 

imaginary number from a real number the letter “ j ” known commonly in electrical engineering as 

the j-operator, is used. The letter j is placed in front of a real number to signify its imaginary 

number operation. Examples of imaginary numbers are: j3, j12, j100 etc. Then a complex number 

consists of two distinct but very much related parts, a “ Real Number ” plus an “ Imaginary Number 

”. 

Complex Numbers  represent points in a two dimensional complex or s-plane that are referenced to 

two distinct axes. The horizontal axis is called the “real axis” while the vertical axis is called the 
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“imaginary axis”. The real and imaginary parts of a complex number, Z are abbreviated as Re(z) and 

Im(z), respectively. 

Complex numbers that are made up of real (the active component) and imaginary (the reactive 

component) numbers can be added, subtracted and used in exactly the same way as elementary 

algebra is used to analyse  DC Circuits. 

The rules and laws used in mathematics for the addition or subtraction of imaginary numbers are the 

same as for real numbers, j2 + j4 = j6 etc. The only difference is in multiplication because two 

imaginary numbers multiplied together becomes a positive real number, as two negatives make a 

positive. Real numbers can also be thought of as a complex number but with a zero imaginary part 

labelled j0. 

The j-operator has a value exactly equal to √-1, so successive multiplication of “ j “, ( j x j ) will 

result in j having the following values of, -1, -j and +1. As the j-operator is commonly used to 

indicate the anticlockwise rotation of a vector, each successive multiplication or power of “ j “, j2, 

j3 etc, will force the vector to rotate through an angle of 90o anticlockwise as shown below. Likewise, 

if the multiplication of the vector results in a  -j  operator then the phase shift will be -90o, i.e. a 

clockwise rotation. 

 

Vector Rotation of the j-operator: 

 
So by multiplying an imaginary number by j2 will rotate the vector by  180o anticlockwise, 

multiplying by j3 rotates it  270o and by j4 rotates it  360o or back to its original position. 

Multiplication by j10 or by j30 will cause the vector to rotate anticlockwise by the appropriate amount. 

In each successive rotation, the magnitude of the vector always remains the same. 

In Electrical Engineering there are different ways to represent a complex number either graphically 

or mathematically. One such way that uses the cosine and sine rule is called the Cartesian or 

Rectangular Form. 

 

Complex Numbers using the Rectangular Form: 

In the last tutorial about Phasors, we saw that a complex number is represented by a real part and an 

imaginary part that takes the generalised form of: Z= x + jy 

 Where: 

   Z  -  is the Complex Number representing the Vector 

   x  -  is the Real part or the Active component 

   y  -  is the Imaginary part or the Reactive component 

   j  -  is defined by √-1 

In the rectangular form, a complex number can be represented as a point on a two-dimensional plane 

called the complex or s-plane. So for example, Z = 6 + j4 represents a single point whose 

coordinates represent 6 on the horizontal real axis and 4 on the vertical imaginary axis. 

http://www.electronics-tutorials.ws/dccircuits/dcp_1.html
http://www.electronics-tutorials.ws/accircuits/phasors.html
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Complex Numbers using Polar Form: 

Unlike rectangular form which plots points in the complex plane, the Polar Form of a complex 

number is written in terms of its magnitude and angle. Thus, a polar form vector is presented 

as:  Z = A ∠±θ, where: Z is the complex number in polar form, A is the magnitude or modulo of the 

vector and θ is its angle or argument of A which can be either positive or negative. The magnitude 

and angle of the point still remains the same as for the rectangular form above, this time in polar 

form the location of the point is represented in a “triangular form” as shown below. 

 

Polar Form Representation of a Complex Number: 

As the polar representation of a point is based around the triangular form, we can use simple 

geometry of the triangle and especially trigonometry and Pythagoras’s Theorem on triangles to find 

both the magnitude and the angle of the complex number. As we remember from school, 

trigonometry deals with the relationship between the sides and the angles of triangles so we can 

describe the relationships between the sides as: 

 

A2 = x2 + y2 

A=√ 𝐱𝟐  +  𝐲𝟐 𝜽 

x= A cos 𝜽 ,y= A sin 𝜽 

Using trigonometry again, the angle θ of A is given as follows. 

𝜃 = 𝑡𝑎𝑛−1  
𝑦

𝑥
 

Then in Polar form the length of A and its angle represents the complex number instead of a point. 

Also in polar form, the conjugate of the complex number has the same magnitude or modulus it is 

the sign of the angle that changes, so for example the conjugate of 6 ∠30o would be 6 ∠– 30o 

Converting between Rectangular Form and Polar Form: 

In the rectangular form we can express a vector in terms of its rectangular coordinates, with the 

horizontal axis being its real axis and the vertical axis being its imaginary axis or j-component. In 

polar form these real and imaginary axes are simply represented by “A ∠θ“.  

 

 

 



ELEMENTS OF ELECTRICAL CIRCUITS 

UNIT – IV (Sinusoidal Steady State Analysis) 
Objectives:   

 To analyse series parallel combinations of R, L, C in steady state. 

 To understand the concepts of complex power and power factor. 

 

Syllabus: 
Steady state analysis of R, L and C (in series, parallel and series parallel combinations) with sinusoidal 

excitation-Concept of Reactance, Impedance, Susceptance and Admittance-Power Factor and significance 
of Real and Reactive power, Complex Power.  

Outcomes: 
On completion the student should be able to:  

 Analyse various series parallel combinations of R, L, C in steady state. 
 

Learning Material 

AC circuit with a pure resistance 

 
Consider an AC circuit with a pure resistance R as shown in the figure. The alternating voltage v 

is given by 

 V=Vm Sinɷt 
Using ohms law, we can write the following relations 

𝒊 =
𝑽

𝑹
=

𝑽𝒎𝒔𝒊𝒏𝝎𝒕

𝑹
= 𝑰𝒎𝒔𝒊𝒏𝝎𝒕 , 𝒘𝒉𝒆𝒓𝒆 𝑰𝒎 =

𝑽𝒎

𝑹
 

 

 From equation (1) and (2) we conclude that in a pure resistive circuit, the voltage and current are 

in phase. Hence the voltage and current waveforms and phasors can be drawn as below 

 

Instantaneous power 
The instantaneous power in the above circuit can be derived as follows: 

𝑝 = 𝑣𝑖 



𝑝 = (𝑉𝑚𝑠𝑖𝑛𝜔𝑡)(𝐼𝑚𝑠𝑖𝑛𝜔𝑡 ) = 𝑉𝑚𝐼𝑚𝑠𝑖𝑛2𝜔𝑡 =
𝑉𝑚𝐼𝑚

2
(1 − 𝑐𝑜𝑠2𝜔𝑡) =

𝑉𝑚𝐼𝑚

2
−

𝑉𝑚𝐼𝑚

2
𝑐𝑜𝑠2𝜔𝑡 

The instantaneous power consists of two terms. The first term is called as the constant power 

term and the second term is called as the fluctuating power term. 

Average power 
From the instantaneous power we can find the average power over one cycle as follows 

𝑃 =
1

2𝜋
∫ [

𝑉𝑚𝐼𝑚

2
−

𝑉𝑚𝐼𝑚

2
𝑐𝑜𝑠2𝜔𝑡]

2𝜋

0

𝑑𝜔𝑡 =
𝑉𝑚𝐼𝑚

2
−

1

2𝜋
∫ [

𝑉𝑚𝐼𝑚

2
𝑐𝑜𝑠2𝜔𝑡]

2𝜋

0

𝑑𝜔𝑡 =
𝑉𝑚𝐼𝑚

2
 

 

𝑃 =
𝑉𝑚

√2

𝐼𝑚

√2
= 𝑉. 𝐼 

As seen above the average power is the product of the rms voltage and the rms current.The 

voltage, current and power waveforms of a purely resistive circuit is as shown in figure. 

 
As seen from the waveform, the instantaneous power is always positive meaning that the power 

always flows from the source to the load. 

Phasor Algebra for a pure resistive circuit 

�̅� = 𝑉∠00 = 𝑉 + 𝑗0, 𝐼 ̅ =
�̅�

𝑅
=

𝑉 + 𝑗0

𝑅
= 𝐼 + 𝑗0 = 𝐼∠00 

AC circuit with a pure inductance 

 
Consider an AC circuit with a pure inductance L as shown in the figure. The alternating voltage 

v is given by 

V=Vm Sinɷt -------------(1) 
The current flowing in the circuit is i. The voltage across the inductor is given as VL which is the 

same as v. 

We can find the current through the inductor as follows 

𝑣 = 𝐿 
𝑑𝑖

𝑑𝑡
 



𝑉𝑚𝑠𝑖𝑛𝜔𝑡 = 𝐿 
𝑑𝑖

𝑑𝑡
 

𝑑𝑖 =  
𝑉𝑚

𝐿
𝑠𝑖𝑛𝜔𝑡 

𝑖 =  
𝑉𝑚

𝐿
 ∫ 𝑠𝑖𝑛𝜔𝑡 𝑑𝑡 =  

𝑉𝑚

𝜔𝐿
 (−𝑐𝑜𝑠 𝜔𝑡 ) =  

𝑉𝑚

𝜔𝐿
 𝑠𝑖𝑛(𝜔𝑡 − 𝜋

2⁄  ) =  𝐼𝑚 𝑠𝑖𝑛(𝜔𝑡 − 𝜋
2⁄  ) 

where 𝐼𝑚 =
𝑉𝑚

𝜔𝐿
 

From equation (1) and (2) we observe that in a pure inductive circuit, the current lags behind the 

voltage by 90⁰. Hence the voltage and current waveforms and phasors can be drawn as below. 

 
 

 

Inductive reactance 
The inductive reactance XL is given as 

XL =ɷL=2πf L 

Im =  
𝑉𝑚

𝑋𝐿
 

It is equivalent to resistance in a resistive circuit. The unit is ohms (Ω) 

 

Instantaneous power 
The instantaneous power in the above circuit can be derived as follows 

𝑝 = 𝑣𝑖 = (𝑉𝑚𝑠𝑖𝑛𝜔𝑡)(𝐼𝑚sin (𝜔𝑡 − 𝜋
2⁄ )) = −𝑉𝑚𝐼𝑚𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠𝜔𝑡 = −

𝑉𝑚𝐼𝑚

2
𝑠𝑖𝑛2𝜔𝑡 

As seen from the above equation, the instantaneous power is fluctuating in nature. 

 

Average power 
From the instantaneous power we can find the average power over one cycle as follows 

𝑃 =
1

2𝜋
∫ −

𝑉𝑚𝐼𝑚

2
𝑠𝑖𝑛2𝜔𝑡 𝑑

2𝜋

0
 𝜔𝑡 =0 

The average power in a pure inductive circuit is zero. Or in other words, the power consumed by 

a pure inductance is zero. The voltage, current and power waveforms of a purely inductive 

circuit is as shown in the figure. 



 
As seen from the power waveform, the instantaneous power is alternately positive and 

negative.When the power is positive, the power flows from the source to the inductor and when 

the power in negative, the power flows from the inductor to the source. The positive power is 

equal to the negative power and hence the average power in the circuit is equal to zero. The 

power just flows between the source and the inductor, but the inductor does not consume any 

power. 

Phasor algebra for a pure inductive circuit: 

�̅� = 𝑉 + 𝑗0 = 𝑉∠0, �̅� = 𝑗𝑋𝐿 = 𝑋𝐿∠900 

𝐼 ̅ = 𝐼∠ − 900 = 0 − 𝑗𝐼 

 �̅� = 𝐼(̅𝑗𝑋𝐿) 

 

AC circuit with a pure capacitance: 

 
Consider an AC circuit with a pure capacitance C as shown in the figure. The alternating voltage 

v is given by 

V=Vm Sinɷt -------------(1) 

The current flowing in the circuit is i. The voltage across the capacitor is given as VC which is 

the same as v.We can find the current through the capacitor as follows 

𝑞 = 𝐶𝑣 = 𝐶𝑉𝑚𝑠𝑖𝑛𝜔𝑡 

𝑖 =
𝑑𝑞

𝑑𝑡
= 𝐶𝑉𝑚𝜔𝑐𝑜𝑠𝜔𝑡 = 𝜔𝐶𝑉𝑚 sin(𝜔𝑡 + 𝜋

2⁄ ) = 𝐼𝑚 sin(𝜔𝑡 + 𝜋
2⁄ )---(2) 

Where 𝐼𝑚 = 𝜔𝐶𝑉𝑚  

From equation (1) and (2) we observe that in a pure capacitive circuit, the current leads the 

voltage by 90⁰. Hence the voltage and current waveforms and phasors can be drawn as below. 



 
Capacitive reactance 
The capacitive reactance XC is given as 

𝑋𝐶 =
1

𝜔𝐶
=

1

2𝜋𝑓𝐶
 ,  𝐼𝑚 =

𝑉𝑚

𝑋𝐶
 

It is equivalent to resistance in a resistive circuit. The unit is 

ohms (Ω) 

 

Instantaneous power 
The instantaneous power in the above circuit can be derived as follows 

As seen from the above equation, the instantaneous power is fluctuating in nature. 

 

Average power 
From the instantaneous power we can find the average power over one cycle as follows 

 

The average power in a pure capacitive circuit is zero. Or in other words, the power consumed 

by a pure capacitance is zero. The voltage, current and power waveforms of a purely capacitive 

circuit is as shown in the figure. 

 
As seen from the power waveform, the instantaneous power is alternately positive and negative. 

When the power is positive, the power flows from the source to the capacitor and when the 

power in negative, the power flows from the capacitor to the source. The positive power is equal 

to the negative power and hence the average power in the circuit is equal to zero. The power just 

flows between the source and the capacitor, but the capacitor does not consume any power. 

 

STEADY STATE ANALYSIS OF R,L,C, ELEMENTS WITH SINUSOIDAL 

EXCITATION 

R-L Series circuit: 



 
Consider an AC circuit with a resistance R and an inductance L connected in series as shown in 

the figure. The alternating voltage v is given by 

V=Vm Sinɷt  

The current flowing in the circuit is i. The voltage across the resistor is VR and that across the 

inductor is VL. 

VR=IR is in phase with I  

VL=IXL leads current by 90 degrees  

With the above information, the phasor diagram can be drawn as shown. 

 
The current I is taken as the reference phasor. The voltage VR is in phase with I and the voltage 

VL leads the current by 90⁰. The resultant voltage V can be drawn as shown in the figure. From 

the phasor diagram we observe that the voltage leads the current by an angle Φ or in other words 

the current lags behind the voltage by an angle Φ. 

The waveform and equations for an RL series circuit can be drawn as below. 

 

From the phasor diagram, the expressions for the resultant voltage V and the angle Φ can be 

derived as follows. 

𝑉 = √𝑉𝑅
2 + 𝑉𝐿

2 , 𝑉𝑅 = 𝐼𝑅, 𝑉𝐿 = 𝐼𝑋𝐿 

𝑉 = √(𝐼𝑅)2 + (𝐼𝑋𝐿)2 = 𝐼√𝑅2 + 𝑋𝐿
2 = 𝐼𝑍 

Where 𝑍 = √𝑅2 + 𝑋𝐿
2
 

The impedance in an AC circuit is similar to a resistance in a DC circuit. The unit for impedance 

is ohms (Ω). 



 

Phase angle 

Ф = tan-1(
𝑉𝐿

𝑉𝑅
)             Ф = tan-1(

ɷ𝐿

𝑅
) 

 

 

 

Instantaneous power 
The instantaneous power in an RL series circuit can 

be derived as follows: 

 
The instantaneous power consists of two terms. The first term is called as the constant power 

term and the second term is called as the fluctuating power term. 

 

Average power 
From the instantaneous power we can find the average power over one cycle as follows 

The voltage, current and power waveforms of a RL series circuit is as shown in the figure. 

 
As seen from the power waveform, the instantaneous power is alternately positive and negative. 

When the power is positive, the power flows from the source to the load and when the power in 

negative, the power flows from the load to the source. The positive power is not equal to the 

negative power and hence the average power in the circuit is not equal to zero. 

From the phasor diagram, 

P =VI cos Ф             P = (IR*I)cosФ          P = (I2R) 

Hence the power in an RL series circuit is consumed only in the resistance. The inductance does 

not consume any power. 

 

Power Factor 
The power factor in an AC circuit is defined as the cosine of the angle between voltage and 

current i.e cos Ф 

The power in an AC circuit is equal to the product of voltage, current and power factor 

 



 

Impedance Triangle 
We can derive a triangle called the impedance triangle from the phasor diagram of an RL series 

circuit as shown 

 
The impedance triangle is right angled triangle with R and XL as two sides and impedance as the 

hypotenuse. The angle between the base and hypotenuse is Ф. The impedance triangle enables us 

to calculate the following things. 

 
  4.    Whether current leads or lags behind the voltage 

 

Power 
In an AC circuit, the various powers can be classified as 

1. Real or Active power 

2. Reactive power 

3. Apparent power 

Real or active power in an AC circuit is the power that does useful work in the cicuit. Reactive 

power flows in an AC circuit but does not do any useful work. Apparent power is the total power 

in an AC circuit. 

 
From the phasor diagram of an RL series circuit, the current can be divided into two components. 

One component along the voltage IcosФ, that is called as the active component of current and 

another component perpendicular to the voltage IsinФ that is called as the reactive component of 

current. 

 

Real Power 



The power due to the active component of current is called as the active power or real power. It 

is denoted by P. 

P = V x ICosФ = I2R 

Real power is the power that does useful power. It is the power that is consumed by the 

resistance. The unit for real power in Watt(W). 

 

Reactive Power 

The power due to the reactive component of current is called as the reactive power. It is denoted 

by Q. 

Q = V x ISinФ = I2XL 

Reactive power does not do any useful work. It is the circulating power in th L and C 

components. The unit for reactive power is Volt Amperes Reactive (VAR). 

 

Apparent Power 

The apparent power is the total power in the circuit. It is denoted by S. 

S = V x I = I2Z 

 
The unit for apparent power is Volt Amperes (VA). 

 

Power Triangle 

From the impedance triangle, another triangle called the power triangle can be derived as shown. 

 
The power triangle is right angled triangle with P and Q as two sides and S as the hypotenuse. 

The angle between the base and hypotenuse is Ф. The power triangle enables us to calculate the 

following things. 

 
The power Factor in an AC circuit can be calculated by any one of the following methods 

1.  Cosine of angle between V and I 

2.   Resistance/Impedance R/Z 

3.   Real Power/Apparent Power P/S 

  Phasor algebra in a RL series circuit 

𝑉 = 𝑉 + 𝑗0 = 𝑉∠0, �̅� = 𝑅 + 𝑗𝑋𝐿 = 𝑍∠𝜙, 𝐼 ̅ =
�̅�

�̅�
=

𝑉

𝑍
∠ − 𝜙 , 𝑆̅ = 𝑉𝐼∗ = 𝑃 + 𝑗𝑄  

 

 



 

 

R-C Series circuit: 

 
Consider an AC circuit with a resistance R and a capacitance C connected in series as shown in 

the figure. The alternating voltage v is given by 

V=Vm Sinɷt 

The current flowing in the circuit is i. The voltage across the resistor is VR and that across the 

capacitor is VC. 

VR=IR is in phase with I 

VC=IXC lags behind the current by 90 degrees 

With the above information, the phasor diagram can be drawn as shown. 

 
The current I is taken as the reference phasor. The voltage VR is in phase with I and the voltage 

VC lags behind the current by 90⁰. The resultant voltage V can be drawn as shown in the figure. 

From the phasor diagram we observe that the voltage lags behind the current by an angle Φ or in 

other words the current leads the voltage by an angle Φ. 

The waveform and equations for an RC series circuit can be drawn as below. 

 
From the phasor diagram, the expressions for the resultant voltage V and the angle _ can be 

derived as follows. 

𝑉 = √𝑉𝑅
2 + 𝑉𝐶

2 = √(𝐼𝑅)2 + 𝐼𝑋𝐶
2 = 𝐼√(𝑅)2 + (𝑋𝐶)2 = 𝐼𝑍  

Where impedance 𝑍 = √(𝑅)2 + 𝑋𝐶)2 

Phase angle 𝜙 = 𝑡𝑎𝑛−1 (
𝑋𝐶

𝑅
) = 𝑡𝑎𝑛−1 (

1

𝜔𝑅𝐶
) 

Average power: 

        𝑃 = 𝑉𝐼𝑐𝑜𝑠∅ = (𝐼𝑍). 𝐼.
𝑅

𝑍
        



Hence the power in an RC series circuit is consumed only in the resistance. The capacitance does 

not consume any power. 

 
Phasor algebra for RC series circuit 

𝑉 = 𝑉 + 𝑗0 = 𝑉∠0, �̅� = 𝑅 − 𝑗𝑋𝐶 = 𝑍∠ − 𝜙, 𝐼 ̅ =
�̅�

�̅�
=

𝑉

𝑍
∠𝜙 

 

R-L-C Series circuit: 

 
Consider an AC circuit with a resistance R, an inductance L and a capacitance C connected in 

series as shown in the figure. The alternating voltage v is given by 

The current flowing in the circuit is i. The voltage across the resistor is VR, the voltage across the 

inductor is VL and that across the capacitor is VC. 

VR=IR is in phase with I 

VL=IXL leads the current by 90 degrees 

VC=IXC lags behind the current by 90 degrees 

With the above information, the phasor diagram can be drawn as shown. The current I is taken as 

the reference phasor. The voltage VR is in phase with I, the voltage VL leads the current by 90⁰ 

and the voltage VC lags behind the current by 90⁰. There are two cases that can occur VL>VC and 

VL>VC depending on the values of XL and XC. And hence there are two possible phasor 

diagrams. The phasor VL-VC or VC-VL is drawn and then the resultant voltage V is drawn. 

 
                               VL>VC                                                                 VL<VC 



From the phasor diagram we observe that when VL>VC , the voltage leads the current by an 

angle Φ or in other words the current lags behind the voltage by an angle Φ. When VL<VC ,the 

voltage lags behind the current by an angle Φ or in other words the current leads the voltage by 

an angle Φ.From the phasor diagram, the expressions for the resultant voltage V and the angle Φ

can be derived as follows. 

𝑉 = √𝑉𝑅
2 + (𝑉𝐿 − 𝑉𝐶 )2 = √(𝐼𝑅)2 + (𝐼𝑋𝐿 − 𝐼𝑋𝐶)2 = 𝐼√(𝑅)2 + (𝑋𝐿 − 𝑋𝐶)2 = 𝐼𝑍 

Where impedance 𝑍 = √(𝑅)2 + (𝑋𝐿 − 𝑋𝐶)2 

Phase angle 𝜙 = 𝑡𝑎𝑛−1 (
𝑋𝐿−𝑋𝐶

𝑅
) 

From the expression for phase angle, we can derive the following three cases 

Case (i): When XL>XC 

The phase angle Ф is positive and the circuit is inductive. The circuit behaves like a series RL 

circuit. 

Case (ii): When XL<XC 

The phase angle Ф is negative and the circuit is capacitive. The circuit behaves like a series RC 

circuit. 

Case (iii): When XL=XC 

The phase angle Ф = 0 and the circuit is purely resistive. The circuit behaves like a pure resistive 

circuit. The voltage and the current can be represented by the following equations. The angle Ф 

is positive or negative depending on the circuit elements. 

𝑉 = 𝑉𝑚𝑠𝑖𝑛𝜔𝑡, 𝐼 = 𝐼𝑚sin (𝜔𝑡 ± 𝜙) 

Average power 

𝑃 = 𝑉𝐼𝑐𝑜𝑠∅ = (𝐼𝑍). 𝐼.
𝑅

𝑍
= 𝐼2𝑅 

               Hence the power in an RLC series circuit is consumed only in the resistance. The 

inductance and the capacitance do not consume any power. 

 

Phasor algebra for RLC series circuit 

𝑉 = 𝑉 + 𝑗0 = 𝑉∠00, �̅� = 𝑅 + 𝑗(𝑋𝐿 − 𝑋𝐶) = 𝑍∠𝜙, 𝐼 ̅ =
𝑉

𝑍
=

𝑉

𝑍
∠ − 𝜙  
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ELEMENTS OF ELECTRICAL CIRCUITS 

UNIT - V (Network Theorems) 

Objectives:   

 To understand the significance of using various theorems in electrical circuits. 

 To apply appropriate theorem to simplify the analysis of a network. 

Syllabus: 

Significance of network theorems, Superposition theorem, Thevenin’s theorem, Norton’s theorem, 

Maximum Power transfer theorem, Reciprocity theorem, Millman’s theorem, Tellegen’s theorem, 

Compensation theorem. 

 

Outcomes: 

On completion, the student will be able to:  

 Apply principle of superposition to find combined response in an element.  

 Obtain thevenin’s and norton’s equivalent for a given circuit. 

 Determine the maximum power transferred to a load. 

INTRODUCTION: 

This chapter will introduce the important fundamental theorems of network analysis. Included are the 

Superposition, Reciprocity, Compensation, Thévenin’s, Norton’s, maximum power transfer, 

Millman’s, and Tellegen’s theorems. We will consider a number of areas of application for each. A 

thorough understanding of each theorem is important since it makes analysis easier. 

5.1. Superposition theorem: 

The superposition theorem can be used to find the solution to networks with two or more sources that 

are not in series or parallel. The most obvious advantage of this method is that it does not require the 

use of a mathematical technique such as determinants to find the required voltages or currents. 

Instead, each source is treated independently, and the algebraic sum is found to determine a 

particular unknown quantity of the network. The superposition theorem states the following: 

The current through, or voltage across, an element in a linear bilateral network is equal to the 

algebraic sum of the currents or voltages produced independently by each source. 

 The superposition theorem extends the use of Ohm’s Law to circuits with multiple sources. 

 In order to apply the superposition theorem to a network, certain conditions must be met: 

 All the components must be linear, meaning that the current is proportional to the applied 

voltage. 

 All the components must be bilateral, meaning that the current is the same amount for 

opposite polarities of the source voltage. 

 Passive components may be used.  

 Active components may not be used.  

To consider the effects of each source independently requires that sources be removed and replaced 

without affecting the final result. To remove a voltage source when applying this theorem, the 

difference in potential between the terminals of the voltage source must be set to zero(short circuit); 

removing a current source requires that its terminals be opened (open circuit). Any internal resistance 

or conductance associated with the displaced sources is not eliminated but must still be considered 

.Figure 5.1 reviews the various substitutions required when removing an ideal source, and Figure 5.2 

reviews the substitutions with practical sources that have an internal resistance. 
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Figure:5.1 Removing the effects of ideal sources 

 

Figure :5.2 removing the effects of practical sources 

The total current through any portion of the network is equal to the algebraic sum of the currents 

produced independently by each source. That is, for a two-source network, if the current produced by 

one source is in one direction, while that produced by the other is in the opposite 

direction through the same resistor, the resulting current is the difference of the two and has the 

direction of the larger. If the individual currents are in the same direction, the resulting current is the 

sum of two in the direction of either current. 

Figure 5.3:demonstration of the fact that superposition is not applicable to power effects

 

This rule holds true for the voltage across a portion of a network as determined by polarities, and it 

can be extended to networks with any number of sources. The superposition principle is not 

applicable to power effects since the power loss in a resistor varies as the square (nonlinear) of the 

current or voltage. For instance, the current through the resistor R of Fig. 5.3(a) is I1 due to one 

source of a two-source network. The current through the same resistor due to the other source is I2 as 

shown in Fig. 5.3(b). Applying the superposition theorem, the total current through the resistor due 

to both sources is IT, as shown in Fig. 5.3(c)with 

IT  = I1+I2 

The power delivered to the resistor in Fig. 5.3(a) is 

P1 = I1
2R 

while the power delivered to the same resistor in Fig. 5.3(b) is 

P2 = I2
2R 

If we assume that the total power delivered in Fig. 5.3(c) can be obtained by simply adding the 

power delivered due to each source, we find that 

PT = P1+ P2  = I1
2R + I2

2R 

P2
T = I1

2+ I2
2 
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This final relationship between current levels is incorrect, however, as can be demonstrated by taking 

the total current determined by the superposition theorem and squaring it as follows: 

IT
2 = (I1+I2)

2 = I1
2 + I2

2+2I1I2 

which is certainly different from the expression obtained from the addition of power levels.  

In general, therefore, the total power delivered to a resistive element must be determined using the 

total current through or the total voltage across the element and cannot be determined by a simple 

sum of the power levels established by each source. 

5.2. RECIPROCITY THEOREM 

The reciprocity theorem is applicable only to single-source networks. 

It is, therefore, not a theorem employed in the analysis of multisource networks described thus far. 

The theorem states the following: 

The current I in any branch of a network, due to a single voltage source E anywhere else in the 

network, will equal the current through the branch in which the source was originally located if the 

source is placed in the branch in which the current I was originally measured. 

In other words, the location of the voltage source and the resulting current may be interchanged 

without a change in current.  

The theorem requires that the polarity of the voltage source have the same correspondence with the 

direction of the branch current in each position. 

In the representative network of Fig. 5.4(a), the current I due to the voltage source E was determined. 

If the position of each is interchanged as shown in Fig. 5.4(b), the current I will be the same value as 

indicated. To demonstrate the validity of this statement and the theorem, consider the network of Fig. 

5.5, in which values for the elements of Fig. 5.4(a) have been assigned. The total resistance is 

 

FIG-5.4 

Demonstrating the impact of the reciprocity theorem 

The uniqueness and power of such a theorem can best be demonstrated by considering a complex, 

single-source network such as the one shown in Fig. 5.5. 

 

FIG-5.5 Demonstrating the power and uniqueness of the reciprocity theorem. 
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5.3 THEVENIN’S THEOREM 

Thevenin’s theorem simplifies the process of solving for the unknown values of voltage and current 

in a network by reducing the network to an equivalent series circuit connected to any pair of network 

terminals. 

Thévenin’s theorem states the following: 

Any two-terminal, linear bilateral dc network can be replaced by an equivalent circuit consisting of 

a voltage source and a series impedance, as shown in Fig 

              .  

FIG  5.6 Thévenin equivalent circuit 

In a given circuit except load impedance remaining circuit is to be replaced by a single voltage 

source in series with impedance. 

 The following sequence of steps will lead to the proper value of ZTh and VTh. 

1. Remove that portion of the network across which the Thévenin equivalent circuit is to be found 

i.e, the load impedance ZL is be temporarily removed from the network.  

2. Mark the terminals of the remaining two-terminal network.  

ZTh: 

3. Calculate ZTh by first setting all sources to zero (voltage sources are replaced by short circuits, and 

current sources by open circuits) and then finding the resultant impedance between the two marked 

terminals. (If the internal impedance of the voltage and/or current sources is included in the original 

network, it must remain when the sources are set to zero). 

VTh: 

4. Calculate VTh by first returning all sources to their original position and finding the open-circuit 

voltage between the marked terminals.  

Conclusion: 

5. Draw the Thévenin equivalent circuit with the portion of the circuit previously removed replaced 

between the terminals of the equivalent circuit. This step is indicated by the placement of the 

impedance ZL between the terminals of the Thévenin equivalent circuit. 

5.4.NORTON’S THEOREM 

The theorem states the following 

Any two-terminal linear bilateral dc network can be replaced by an equivalent circuit consisting of a 

current source and a parallel impedance, as shown in Fig. 

 

FIG-5.7 Norton equivalent circuit 

The following sequence of steps will lead to the proper values of IN and ZN 
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1. Remove that portion of the network across which the Norton equivalent circuit is found. 

2. Mark the terminals of the remaining two-terminal network. 

ZN: 

3. Calculate ZN by first setting all sources to zero (voltage sources are replaced with short circuits 

and current sources with open circuits) and then finding the resultant impedance between the two 

marked terminals. (If the internal impedance of the voltage and/or current sources is included in the 

original network, it must remain when the sources are set to zero.) Since ZN =ZTh, the procedure and 

value obtained using the approach described for Thévenin’s theorem will determine the proper value 

of ZN. 

IN: 

4. Calculate IN by first returning all sources to their original position and then finding the short-

circuit current between the marked terminals. It is the same current that would be measured by an 

ammeter placed between the marked terminals. 

Conclusion: 

5. Draw the Norton equivalent circuit with the portion of the circuit previously removed replaced 

between the terminals of the equivalent circuit. 

 

*    *    * 
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Elements of Electrical Circuits 

UNIT - VI (Network Theorems) 

Objectives:   

 To understand the significance of using various theorems in electrical circuits. 

 To apply appropriate theorem to simplify the analysis of a network. 

Syllabus: 

Significance of network theorems, Maximum Power transfer theorem, Millman’s theorem, and  Tellegen’s 

theorem. 

Outcomes: 

On completion, the student will be able to:  

 Determine the maximum power transferred to a load. 

 To Develop Milliman Equivalent Circuit. 

INTRODUCTION: 

This chapter will introduce the important fundamental theorems of network analysis. Included are the 

Superposition, Reciprocity, Compensation, Thévenin’s, Norton’s, maximum power transfer, 

Millman’s, and Tellegen’s theorems. We will consider a number of areas of application for each. A 

thorough understanding of each theorem is important since it makes analysis easier. 

6.1. MAXIMUM POWER TRANSFER THEOREM 

The maximum power transfer theorem states the following: 

A load will receive maximum power from a linear bilateral dc network when its total resistive value 

is exactly equal to the Thévenin’s resistance of the network as “seen” by the load. 

 
FIG-6.1 

Defining the conditions for maximum power to a load using the Thévenin equivalent circuit. 

For the network of Fig. .8, maximum power will be delivered to the load when 

RL=RTh 

From past discussions, we realize that a Thévenin equivalent circuit can be found across any element 

or group of elements in a linear bilateral dc network. Therefore, if we consider the case of the 

Thévenin equivalent circuit with respect to the maximum power transfer theorem, we are, in essence, 

considering the total effects of any network across a resistor RL, such as in Fig. 6.2. 

For the Norton equivalent circuit of Fig. 6.2, maximum power will be delivered to the load when 
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FIG-6.2 

Defining the conditions for maximum power to a load using the Norton equivalent circuit 

RL=RN 

This result will be used to its fullest advantage in the analysis of transistor networks, where the most 

frequently applied transistor circuit model employs a current source rather than a voltage source. 

For the network of Fig 6.1, 

𝐼 =
𝐸𝑇ℎ

𝑅𝑇ℎ + 𝑅𝐿
 

And 

𝑃𝐿 = 𝐼2𝑅𝐿 = (
𝐸𝑇ℎ

𝑅𝑇ℎ + 𝑅𝐿
)
2

𝑅𝐿 

So that 

𝑃𝐿 =
𝐸𝑇ℎ
2 𝑅𝐿

(𝑅𝑇ℎ + 𝑅𝐿)2
 

𝐼 =
𝐸𝑇ℎ

𝑅𝑇ℎ + 𝑅𝐿
=

𝐸𝑇ℎ
2𝑅𝑇ℎ

 

𝑃𝐿 = 𝐼2𝑅𝐿 = (
𝐸𝑇ℎ
2𝑅𝑇ℎ

)
2

𝑅𝑇ℎ =
𝐸𝑇ℎ
2 𝑅𝑇ℎ
4𝑅𝑇ℎ

2  

and 

𝑃𝐿𝑚𝑎𝑥 =
𝐸𝑇ℎ
2

4𝑅𝑇ℎ
2 (𝑤𝑎𝑡𝑡𝑠,W) 

For the Norton circuit of Fig. 6.1 

 

𝑃𝐿𝑚𝑎𝑥 =
𝐼𝑁
2𝑅𝑁
4

(W) 

6.2 MILLMAN’S THEOREM 

Through the application of Millman’s theorem, any number of parallel voltage sources can be 

reduced to one. In Fig. 6.3, for example, the three voltage sources can be reduced to one. This would 

permit finding the current through or voltage across RL without having to apply a method such as 

mesh analysis, nodal analysis, superposition, and so on. The theorem can best be described by 

applying it to the network of Fig. 6.3. Basically, three steps are included in its application. 

 
FIG-6.3 

Demonstrating the effect of applying Millman’s theorem 

Step 1: Convert all voltage sources to current sources. This is performed in Fig. 6.4 for the network 

of Fig.6.4. 
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FIG-6.4 

Converting all the sources of Fig. 6.3 to current sources 

Step 2: Combine parallel current sources. The resulting network is shown in Fig. 6.5, where 

IT =I1 + I2 + I3 and GT =G1 + G2 + G3 

 
FIG-6.5 

Reducing all the current sources of Fig.6.5 to a single current source 

Step 3: Convert the resulting current source to a voltage source, and the desired single-source 

network is obtained.  

 
FIG-6.6 Converting the current source of Fig. 6.5 to a voltage source. 

In general, Millman’s theorem states that for any number of parallel voltage sources, 

𝐸𝑒𝑞 =
𝐼𝑇
𝑌𝑇

=
±𝐼1 ± 𝐼2 ± 𝐼3 ±⋯± 𝐼𝑁
𝑌1 + 𝑌2 + 𝑌3 +⋯+ 𝑌𝑁

 

The plus-and-minus signs appear in Equation to include those cases where the sources may not be 

supplying energy in the same direction.  

The equivalent impedance is 𝑍𝑒𝑞 =
1

𝑌𝑇
=

1

𝑌1+𝑌2+𝑌3+⋯+𝑌𝑁
 

In terms of the impedance values, 𝐸𝑒𝑞 =
±
𝐸1
𝑌1
±
𝐸2
𝑌2
±
𝐸3
𝑌3
±⋯±

𝐸𝑁
𝑌𝑁

1

𝑌1
+

1

𝑌2
+

1

𝑌3
+⋯+

1

𝑌𝑁

 

and                                      𝑍𝑒𝑞 =
1

1

𝑌1
+

1

𝑌2
+

1

𝑌3
+⋯+

1

𝑌𝑁

 

The relatively few direct steps required may result in the student’s applying each step rather than 

memorizing and employing. 

 

6.3. Tellegen Theorem:  
This theorem has been introduced in the year of 1952 by Dutch Electrical Engineer Bernard D.H. 

Tellegen. This is a very useful theorem in network analysis. According to Tellegen theorem, the 

summation of instantaneous powers for the n number of branches in an electrical network is zero.  

Suppose n number of branches in an electrical network have i1, i2, i3, .............in respective 

instantaneous currents through them. These currents satisfy Kirchhoff's current law. Again, suppose 

these branches have instantaneous voltages across them are v1, v2, v3, ........... vn respectively. If these 

voltages across these elements satisfy Kirchhoff Voltage law then, 

 
vk is the instantaneous voltage across the kth branch and ik is the instantaneous current flowing 

through this branch. Tellegen theorem is applicable mainly in general class of lumped networks that 

consist of linear, non-linear, active, passive, time variant and time variant elements. This theorem 

can easily be explained by the following example. 

In the network shown, arbitrary reference directions have been selected for all of the branch 

currents, and the corresponding branch voltages have been indicated, with positive reference 

direction at the tail of the current arrow. For this network, we will assume a set of branch voltages 

http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/voltage-or-electric-potential-difference/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/
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satisfy the Kirchhoff voltage law and a set of branch current satisfy Kirchhoff current law at each 

node. We will then show that these arbitrary assumed voltages and currents satisfy the equation. 

 

 
 

And it is the condition of Tellegen theorem. 

In the network shown in the figure, let v1, v2 and v3 be 7, 2 and 3 volts respectively. Applying 

Kirchhoff voltage law around loop ABCDEA. We see that v4 = 2 volt is required. Around loop 

CDFC, v5 is required to be 3 volt and around loop DFED, v6 is required to be 2. We next apply 

Kirchhoff current law successively to nodes B, C and D. 

At node B let ii = 5 A, then it is required that i2 = − 5 A. At node C let i3 = 3 A and then i5 is required 

to be − 8. At node D assume i4 to be 4 then i6 is required to be − 9. Carrying out the operation of 

equation, 

 
we get, 7 X 5 + 2 X ( − 5) + 3 X 3 + 2 X 4 + 3 X ( − 8) + 2 X ( − 9) = 0 Hence Tellegen theorem is 

verified. 

 

*   *   * 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
http://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/

	Complex Numbers using the Rectangular Form:
	Complex Numbers using Polar Form:
	Polar Form Representation of a Complex Number:
	As the polar representation of a point is based around the triangular form, we can use simple geometry of the triangle and especially trigonometry and Pythagoras’s Theorem on triangles to find both the magnitude and the angle of the complex number. As...
	A2 = x2 + y2
	A=, ,𝐱-𝟐. + ,𝐲-𝟐.. 𝜽
	x= A cos 𝜽 ,y= A sin 𝜽

	Converting between Rectangular Form and Polar Form:
	Using ohms law, we can write the following relations
	𝒊=,𝑽-𝑹.=,,𝑽-𝒎.𝒔𝒊𝒏𝝎𝒕-𝑹.=,𝑰-𝒎.𝒔𝒊𝒏𝝎𝒕 , 𝒘𝒉𝒆𝒓𝒆 ,𝑰-𝒎.=,,𝑽-𝒎.-𝑹.

